ZUSAMMENFASSUNG DER MERKMALE DES ARZNEIMITTELS

Zusammenfassung der Merkmale des Arzneimittels: Fachinformation

1. Bezeichnung des Arzneimittels

Technescan Sestamibi 1 mg Kit für ein radioaktives Arzneimittel

2. Qualitative und quantitative Zusammensetzung

Jede Durchstechflasche enthält 1 mg Tetrakis(2-methoxy-2-methylpropanisocyanid)kupfer(I)-tetrafluoroborat.

Das Radionuklid ist nicht Bestandteil des Kits.

Vollständige Auflistung der sonstigen Bestandteile, siehe Abschnitt 6.1.

3. Darreichungsform

Kit für ein radioaktives Arzneimittel.

Weiße bis nahezu weiße Pellets oder Pulver.

Zur Rekonstitution mit Natriumpertechnetat (99mTc)-Injektionslösung.

4. Klinische Angaben

4.1 Anwendungsgebiete

Dieses Arzneimittel ist ein Diagnostikum. Es wird bei Erwachsenen angewendet. Zur Anwendung bei Kindern und Jugendlichen siehe Abschnitt 4.2.

Nach der Markierung mit Natriumpertechnetat (^{99m}Tc)-Lösung wird die so erhaltene Technetium (^{99m}Tc)-Sestamibi-Lösung angewendet zur:

- Perfusionsszintigrafie des Myokards zum Nachweis und zur Lokalisation von Erkrankungen der Koronararterien (Angina Pectoris und Myokardinfarkt)
- Beurteilung der globalen ventrikulären Funktion First-pass-Technik zur Beurteilung der Ejektionsfraktion und/oder EKG-getriggertes SPECT zur Beurteilung der linksventrikulären Ejektionsfraktion, des Volumens und der regionalen Wandbewegung
- Szintimammografie zum Nachweis bei Verdacht auf Mammakarzinom, wenn die Mammografie zweifelhaft, diagnostisch nicht ausreichend ist oder keine Aussage erlaubt
- Erfassung und Lokalisierung von hyperaktivem Nebenschilddrüsengewebe bei Patienten mit rezidivierender oder persistierender Erkrankung bei primärem und sekundärem Hyperparathyroidismus und bei Patienten mit primärem Hyperparathyroidismus, die erstmals einer Operation der Nebenschilddrüse unterzogen werden müssen

4.2 Dosierung und Art der Anwendung

Dosierung

Erwachsene und ältere Menschen

Je nach Eigenschaften der Gammakamera und der Rekonstruktionsmodalitäten kann die Dosierung unterschiedlich sein. Eine Injektion höherer Aktivitäten, d. h. höher als die nationalen DRWs (diagnostische Referenzwerte), sollte begründet sein.

Für einen Erwachsenen (70 kg) werden folgende Aktivitätsbereiche zur intravenösen Anwendung empfohlen:

Diagnose der koronaren Minderperfusion sowie des Herzinfarktes

 $400 - 900 \, MBq$

Die empfohlene Aktivitätsmenge zur Diagnose der ischämischen Herzerkrankung liegt entsprechend der europäischen Richtlinien im Bereich von:

- Zwei-Tages-Protokoll: 600 900 MBq/Untersuchung
- Ein-Tages-Protokoll: 400 500 MBq für die erste Injektion, die dreifache Dosis für die zweite Injektion.

Eine Maximalaktivität von insgesamt 2000 MBq für das Ein-Tages-Protokoll und von insgesamt 1800 MBq für das Zwei-Tages-Protokoll sollte für beide Injektionen (Ruhe und Belastung) nicht überschritten werden, wobei bei einem Ein-Tages-Protokoll die zweite Injektion frühestens 2 Stunden nach der ersten Injektion erfolgen sollte. Die Untersuchung kann auch in umgekehrter Reihenfolge durchgeführt werden. Nach der Injektion unter Belastung sollte der Patient dazu angehalten werden, die Belastung für eine weitere Minute (wenn möglich) durchzuführen.

Zur Diagnostik des Herzinfarktes ist eine Injektion in Ruhe normalerweise ausreichend.

Zur Diagnostik der ischämischen Herzerkrankung sind zwei Injektionen (Belastung und Ruhe) erforderlich, um Ischämie von Narben zu unterscheiden.

Beurteilung der globalen Ventrikelfunktion

600 – 800 MBq i.v. als Bolusinjektion.

Szintimammografie

700 – 1000 MBq als Bolusinjektion, normalerweise in den der zu untersuchenden Läsion gegenüberliegenden Arm.

Lokalisierung von hyperaktivem Nebenschilddrüsengewebe

200 – 700 MBq als Bolusinjektion. Die übliche Aktivität liegt zwischen 500 und 700 MBq.

Je nach Eigenschaften der Gammakamera und der Rekonstruktionsmodalitäten kann die Dosierung unterschiedlich sein.

Eine Injektion höherer Aktivitäten, d. h. höher als die nationalen DRWs (diagnostische Referenzwerte), sollte begründet sein.

Nierenfunktionsstörung

Eine sorgfältige Abwägung der anzuwendenden Aktivität ist erforderlich, da bei diesen Patienten die Möglichkeit einer erhöhten Strahlenexposition besteht.

Leberfunktionsstörung

Generell sollte bei Patienten mit verminderter Leberfunktion die zu verabreichende Aktivitätsmenge sorgfältig gewählt werden; normalerweise sollte mit der Aktivitätsmenge am unteren Ende des Dosierungsbereichs begonnen werden.

Kinder und Jugendliche

Die Anwendung bei Kindern und Jugendlichen sollte mit Vorsicht erfolgen, und unter Berücksichtigung der klinischen Notwendigkeit und Einbeziehung des Nutzen-Risiko-Verhältnisses in dieser Patientengruppe erfolgen. Die bei Kindern und Jugendlichen zu verabreichenden Aktivitäten können gemäß den Empfehlungen der Dosierungskarte der *European Association of Nuclear Medicine* (EANM) berechnet werden; die bei Kindern und Jugendlichen zu verabreichende Aktivität kann durch Multiplikation einer Baseline-Aktivität (für

Berechnungszwecke) mit einem vom Körpergewicht abhängigen Faktor, der in der Tabelle unten aufgeführt ist, berechnet werden.

 $A[MBq]_{Verabreicht} = Baseline-Aktivität \times Faktor$

Die Baseline-Aktivität bei Anwendung in der Krebsdiagnostik beträgt 63 MBq. In der Herzdiagnostik liegt die minimale bzw. maximale Baseline-Aktivität bei 42 bzw. 63 MBq für das Zwei-Tages-Protokoll für Herzaufnahmen sowohl in Ruhe als auch unter Belastung. Beim Ein-Tages-Protokoll in der Herzdiagnostik beträgt die Baseline-Aktivität 28 MBq in Ruhe und 84 MBq unter Belastung. Die kleinstmögliche Aktivität für jede bildgebende Untersuchung ist 80 MBq.

Gewicht [kg]	Faktor	Gewicht [kg]	Faktor	Gewicht [kg]	Faktor
3	1	22	5,29	42	9,14
4	1,14	24	5,71	44	9,57
6	1,71	26	6,14	46	10,00
8	2,14	28	6,43	48	10,29
10	2,71	30	6,86	50	10,71
12	3,14	32	7,29	52-54	11,29
14	3,57	34	7,72	56-58	12,00
16	4,00	36	8,00	60-62	12,71
18	4,43	38	8,43	64-66	13,43
20	4,86	40	8,86	68	14,00

Art der Anwendung

Zur intravenösen Anwendung.

Wegen einer potenziellen Gewebeschädigung ist eine extravasale Injektion dieses radioaktiven Arzneimittels unbedingt zu vermeiden.

Zur Mehrfachdosierung.

Vorsichtsmaßnahmen vor der Handhabung und Anwendung des Arzneimittels

Vor der Anwendung beim Patienten muss dieses Arzneimittel rekonstituiert werden. Anweisungen zur Rekonstitution und zur Kontrolle der radiochemischen Reinheit des Arzneimittels vor der Anwendung siehe Abschnitt 12.

Zur Vorbereitung des Patienten siehe Abschnitt 4.4.

Bildakquisition

Herzdiagnostik

Die Akquisition sollte idealerweise 30–60 Minuten nach Injektion beginnen, um eine hepatobiliäre Ausscheidung zu ermöglichen. Eine längere Wartezeit bis zur Akquisition in Ruhe und unter Belastung nur mit Vasodilatatoren kann wegen des Risikos höherer subdiaphragmatischer Technetium(99mTc)-Aktivität erforderlich sein. Es gibt keine Beweise für signifikante Änderungen der Herz-Tracer-Konzentration oder einer Redistribution, daher ist eine Akquisition bis zu 6 Stunden nach Injektion möglich. Untersuchungen können als Ein-Tages- oder Zwei-Tages-Protokoll durchgeführt werden.

Vorzugsweise sollte die tomografische Akquisition (SPECT) mit oder ohne EKG-Ausblendung (gating) durchgeführt werden.

Szintimammografie

Der optimale Zeitpunkt zur Aufnahme der Brustbilder liegt zwischen 5 und 10 Minuten nach Injektion, wobei sich die Patientin in Bauchlage mit frei hängender Brust befindet.

Das Arzneimittel ist in eine Vene in den Arm zu verabreichen, der der Brust mit der mutmaßlichen Läsion gegenüberliegt. Bei beidseitiger Erkrankung erfolgt die Injektion idealerweise in eine dorsale Vene am Fuß.

Konventionelle Gammakamera

Die Patientin sollte danach so positioniert werden, dass die kontralaterale Brust hängt und eine entsprechende laterale Aufnahme dieser Brust erfolgen kann. Eine anteriore Aufnahme in Rückenlage mit den Armen hinter dem Kopf verschränkt kann dann erfolgen.

Spezieller Detektor zur Brustdiagnostik

Bei Verwendung eines speziellen Detektors zur Brustdiagnostik muss ein passendes gerätespezifisches Protokoll eingehalten werden, um eine bestmögliche Bilddarstellung zu erreichen.

Nebenschilddrüsendiagnostik

Die Darstellung der Nebenschilddrüse hängt vom gewählten Protokoll ab. Die am häufigsten verwendeten Untersuchungsmethoden sind die Subtraktionstechnik und/oder die Zweiphasen-Technik, die auch zusammen durchgeführt werden können.

Zur bildlichen Darstellung der Schilddrüse mittels Subtraktionstechnik kann entweder Natriumiodid (¹²³I) oder Natriumpertechnetat (^{99m}Tc) verwendet werden, da beide Arzneimittel von funktionsfähigem Schilddrüsengewebe eingefangen werden. Dieses Bild wird von der mit Technetium(^{99m}Tc)-Sestamibi durchgeführten Aufnahme abgezogen, und nach der Subtraktion bleibt nur das pathologische hyperaktive Nebenschilddrüsengewebe sichtbar. Bei Verwendung von Natriumiodid (¹²³I) werden 10 - 20 MBq oral verabreicht. Vier Stunden nach der Verabreichung können Bilder von Hals und Thorax aufgenommen werden. Nach der Bildaufnahme mit Natriumiodid (¹²³I) werden 200 - 700 MBq Technetium(^{99m}Tc)-Sestamibi injiziert und 10 Minuten nach der Injektion Bilder in doppelter Akquisition mit 2 Gammaenergiepeaks (140 keV für Technetium (^{99m}Tc) und 159 keV für Iod [¹²³I]) aufgenommen. Bei Verwendung von Natriumpertechnetat (^{99m}Tc) werden 40–150 MBq injiziert und 30 Minuten später Hals- und Thoraxaufnahmen angefertigt. Danach werden 200–700 MBq Technetium(^{99m}Tc)-Sestamibi injiziert und 10 Minuten später erfolgt eine zweite Bildaufnahme.

Bei Anwendung der Zweiphasen-Technik werden 400–700 MBq Technetium(^{99m}Tc)-Sestamibi injiziert und 10 Minuten später die erste Aufnahme von Hals und Mediastinum angefertigt. Nach einer *Wash-Out-*Phase von 1-2 Stunden werden Hals- und Mediastinumaufnahmen erneut angefertigt.

Die planaren Aufnahmen können durch Früh- oder Spätaufnahmen von SPECT oder SPECT/CT ergänzt werden.

4.3 Gegenanzeigen

Überempfindlichkeit gegen den Wirkstoff oder einen der in Abschnitt 6.1 genannten sonstigen Bestandteile.

Bei der Myokardszintigrafie unter Belastung sind die allgemeinen Kontraindikationen für die Ergometrie und pharmakologische Stresstests zu berücksichtigen.

4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung

Potenzial für Überempfindlichkeitsreaktionen oder anaphylaktische Reaktionen

Beim Auftreten von Überempfindlichkeitsreaktionen ist das Arzneimittel sofort abzusetzen und, sofern notwendig, eine intravenöse Behandlung einzuleiten. Um sofortige Notfallmaßnahmen ergreifen zu können, sollten entsprechende Arzneimittel und Ausstattung (wie z. B. Trachealtubus und Beatmungsgerät) unmittelbar verfügbar sein.

Individuelle Nutzen-Risiko-Abwägung

Die Strahlenexposition muss bei jedem Patienten durch den erwarteten Nutzen gerechtfertigt sein. Die anzuwendende Aktivität darf nicht höher bemessen werden, als für den Erhalt der diagnostischen Information erforderlich ist.

Nieren- oder Leberfunktionsstörung

Bei diesen Patienten ist eine sorgfältige Abwägung des Nutzen-Risiko-Verhältnisses erforderlich, da die Strahlenexposition möglicherweise erhöht ist (siehe Abschnitt 4.2).

Kinder und Jugendliche

Angaben zur Anwendung bei Kindern und Jugendlichen siehe Abschnitt 4.2.

Da die effektive Dosis pro MBq höher ist als bei Erwachsenen, ist eine besonders sorgfältige Indikationsstellung erforderlich (siehe Abschnitt 11).

Patientenvorbereitung

Vor Beginn der Untersuchung muss der Patient ausreichend hydriert sein. In den ersten Stunden nach der Untersuchung ist der Patient dazu anzuhalten, so oft wie möglich die Blase zu entleeren, um die Strahlenbelastung zu vermindern.

Herzdiagnostik

Wenn möglich sollte der Patient mindestens 4 Stunden vor der Untersuchung nichts mehr essen. Es wird empfohlen, dass der Patient nach jeder Injektion und vor der Akquisition eine leichte, fetthaltige Mahlzeit zu sich nimmt oder 1 bis 2 Gläser Milch trinkt. Dadurch wird die hepatobiliäre Ausscheidung von Technetium(99mTc)-Sestamibi beschleunigt, sodass die Aufnahme eine verminderte Radioaktivität in der Leber aufweist.

Auswertung der mit Technetium(99mTc)-Sestamibi erzeugten Bilder

Auswertung der Szintimammografie

Mit der Szintimammografie werden möglicherweise nicht alle Brustläsionen mit einem Durchmesser von weniger als 1 cm Durchmesser entdeckt, da die Sensitivität von Technetium(99mTc)-Sestamibi für die Erkennung dieser Läsionen relativ gering ist. Ein negativer Befund insbesondere bei solch kleinen Läsionen schließt eine Brustkrebserkrankung nicht aus.

Nach der Untersuchung

Der enge Kontakt mit Kleinkindern und schwangeren Frauen sollte in den ersten 24 Stunden nach der Injektion vermieden werden.

Besondere Warnhinweise

Bei der Myokardszintigrafie unter Belastung sind die allgemeinen Kontraindikationen und Vorsichtsmaßnahmen für die Ergometrie und pharmakologische Stresstests zu berücksichtigen.

Dieses Arzneimittel enthält weniger als 1 mmol Natrium (23 mg) pro Dosis, d. h., es ist nahezu "natriumfrei".

Hinweise zur Vermeidung von Gefahren für die Umwelt siehe Abschnitt 6.6.

4.5 Wechselwirkungen mit anderen Arzneimitteln und sonstige Wechselwirkungen

Kardiale Medikation

Arzneimittel, die die Myokardfunktion und/oder die Durchblutung beeinflussen, können in der Diagnose der koronaren Herzkrankheit zu falsch negativen Ergebnissen führen. Insbesondere Betablocker und Calcium-Antagonisten vermindern den Sauerstoffverbrauch und beeinflussen folglich auch die Perfusion und Betablocker hemmen die Steigerung der Herzfrequenz und den Blutdruckanstieg bei Belastung. Aus diesem Grunde ist die Begleitmedikation bei der Interpretation der Ergebnisse szintigrafischer Untersuchungen zu berücksichtigen. Die Empfehlungen der jeweiligen Richtlinien zu ergometrischen oder pharmakologischen Stresstests sind einzuhalten.

Protonenpumpenhemmer

Es hat sich gezeigt, dass die Anwendung von Protonenpumpenhemmern signifikant mit einer Magenwandaufnahme assoziiert ist. Ihre Nähe zur inferioren Myokardwand kann entweder zu falsch-negativen oder falsch-positiven Befunden und damit zu einer ungenauen Diagnose führen. Eine Karenzzeit von mindestens 3 Tagen wird empfohlen.

Iodhaltige Präparate

Bei Verwendung der Subtraktionstechnik zur bildlichen Darstellung des hyperaktiven Nebenschilddrüsengewebes führt eine kürzlich erfolgte Anwendung von iodhaltigen Kontrastmitteln, Arzneimitteln zur Behandlung einer Schilddrüsenüber- oder -unterfunktion oder verschiedenen anderen Arzneimitteln wahrscheinlich zu einer verminderten Qualität der Schilddrüsenaufnahmen oder macht die Subtraktion sogar unmöglich. Eine vollständige Auflistung der möglicherweise in Wechselwirkung tretenden Arzneimittel ist in den Fachinformationen von Natriumiodid (123I) oder Natriumpertechnetat (99mTc) zu finden.

Kinder und Jugendliche

Studien zur Erfassung von Wechselwirkungen wurden nur bei Erwachsenen durchgeführt.

4.6 Fertilität, Schwangerschaft und Stillzeit

Frauen im gebärfähigen Alter

Wird bei einer Frau im gebärfähigen Alter die Anwendung eines radioaktiven Arzneimittels erwogen, ist immer festzustellen, ob eine Schwangerschaft vorliegt. Grundsätzlich muss von einer Schwangerschaft ausgegangen werden, wenn die Menstruation ausgeblieben ist. Falls Ungewissheit besteht (ausgebliebene Periode, unregelmäßige Periode etc.), sollten alternative Untersuchungsmethoden ohne Verwendung von ionisierender Strahlung der Patientin angeboten werden, sofern es sie gibt.

Schwangerschaft

Nuklearmedizinische Untersuchungen bei Schwangeren bedeuten auch eine Strahlenbelastung für den Föten. Daher dürfen nur absolut unerlässliche Untersuchungen während der Schwangerschaft durchgeführt werden, wenn der zu erwartende Nutzen bei Weitem das Risiko für Mutter und Kind übersteigt.

Stillzeit

Vor Verabreichung eines radioaktiven Arzneimittels an Stillende sollte die Möglichkeit in Betracht gezogen werden, die Anwendung auf einen Zeitpunkt nach dem Abstillen zu verschieben, und geprüft werden, ob im Hinblick auf die Aktivitätsausscheidung in die Muttermilch das geeignete radioaktive Arzneimittel gewählt wurde. Falls die Anwendung notwendig ist, sollte das Stillen für 24 Stunden unterbrochen und die Muttermilch verworfen werden.

Der enge Kontakt mit Kleinkindern sollte in den ersten 24 Stunden nach der Injektion vermieden werden.

Fertilität

Es wurden keine Fertilitätsstudien durchgeführt.

4.7 Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen

Technescan Sestamibi hat keinen oder einen zu vernachlässigenden Einfluss auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen.

4.8 Nebenwirkungen

Bei der Bewertung von Nebenwirkungen werden folgende Häufigkeiten zugrunde gelegt:

Sehr häufig (≥1/10)
Häufig (≥1/100, <1/10)
Gelegentlich (≥1/1.000, <1/100)
Selten (≥1/10.000, <1/1.000)
Sehr selten (<1/10.000)
Nicht bekannt (Häufigkeit auf Grundlage der verfügbaren Daten nicht abschätzbar)

Erkrankungen des Immunsystems:

Selten: Schwere Überempfindlichkeitsreaktionen wie Dyspnoe, Hypotonie, Bradykardie, Asthenie und Erbrechen (im Allgemeinen innerhalb von zwei Stunden nach der Anwendung), Angioödem. Andere Überempfindlichkeitsreaktionen (allergische Haut- und Schleimhautreaktionen mit Exanthemen [Pruritus, Urtikaria, Ödeme], Vasodilatation).

Sehr selten: Andere Überempfindlichkeitsreaktionen wurden bei prädisponierten Patienten beschrieben.

Erkrankungen des Nervensystems:

Gelegentlich: Kopfschmerzen

Selten: Krampfanfälle (kurz nach der Anwendung), Synkope.

Herzerkrankungen:

Gelegentlich: Brustschmerzen/Angina Pectoris, EKG-Veränderungen

Selten: Arrhythmien

Erkrankungen des Gastrointestinaltrakts:

Gelegentlich: Übelkeit

Selten: Abdominale Schmerzen

Erkrankungen der Haut und des Unterhautzellgewebes:

Selten: Lokale Reaktionen an der Injektionsstelle, verminderte Empfindung von Berührungsreizen

(Hypästhesie) und Missempfindungen (Parästhesie), Flushing

Nicht bekannt: Erythema multiforme

Allgemeine Erkrankungen und Beschwerden am Verabreichungsort:

Häufig: Direkt nach der Injektion ist häufig mit einem metallischen und bitteren Geschmack, z. T. mit

Mundtrockenheit und einer Störung des Geruchssinns verbunden, zu rechnen.

Selten: Fieber, Müdigkeit, Schwindelgefühl, vorübergehende arthritisähnliche Schmerzen, Dyspepsie.

Andere Erkrankungen:

Ionisierende Strahlen können Krebs und Erbgutveränderungen verursachen. Da die effektive Dosis bei Verabreichung der maximal empfohlenen Aktivität von 2000 MBq (500 in Ruhe und 1500 MBq unter Belastung) für ein Ein-Tages-Protokoll 16,4 mSv beträgt, ist die Wahrscheinlichkeit für das Auftreten dieser Nebenwirkungen voraussichtlich gering.

Meldung des Verdachts auf Nebenwirkungen

Die Meldung des Verdachts auf Nebenwirkungen nach der Zulassung ist von großer Wichtigkeit. Sie ermöglicht eine kontinuierliche Überwachung des Nutzen-Risiko-Verhältnisses des Arzneimittels. Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung über das nationale Meldesystem anzuzeigen:

Bundesamt für Sicherheit im Gesundheitswesen Traisengasse 5 1200 WIEN ÖSTERREICH

Fax: + 43 (0) 50 555 36207 Website: http://www.basg.gv.at/

4.9 Überdosierung

Im Fall einer Überdosierung der Radioaktivität mit Technetium(^{99m}Tc)-Sestamibi sollte die aufgenommene Dosis, sofern möglich, durch häufiges Wasserlassen bzw. durch Abführmaßnahmen reduziert werden. So wird das Radionuklid schneller aus dem Körper ausgeschieden. Es kann hilfreich sein, die verabreichte effektive Strahlendosis zu schätzen.

5. Pharmakologische Eigenschaften

5.1 Pharmakodynamische Eigenschaften

Pharmakotherapeutische Gruppe: Radiodiagnostika; (99mTc)Technetium-Verbindungen

ATC-Code: V09GA01.

Pharmakodynamische Wirkungen

In den für diagnostische Untersuchungen verwendeten chemischen Konzentrationen ist keine pharmakologische Wirkung von Technetium(^{99m}Tc)-Sestamibi-Lösung zu erwarten.

5.2 Pharmakokinetische Eigenschaften

Nach der Rekonstitution mit Natriumpertechnetat (^{99m}Tc)-Injektionslösung entsteht der folgende Komplex (Technetium(^{99m}Tc)-Sestamibi):

 99 mTc (MIBI)₆ + MIBI = 2-Methoxyisobutylisonitril

Bioverteilung

Die Verteilung von Technetium(^{99m}Tc)-Sestamibi aus dem Blut in das Gewebe erfolgt rasch: 5 Minuten nach Injektion sind nur noch ca. 8 % der injizierten Dosis im Blutpool verblieben. Bei physiologischer Verteilung ist eine Konzentration von Technetium(^{99m}Tc)-Sestamibi *in vivo* in mehreren Organen eindeutig nachweisbar. Insbesondere findet eine normale Tracer-Aufnahme in Speicheldrüsen, Schilddrüse, Myokard, Leber, Gallenblase, Dünn- und Dickdarm, Nieren, Blase, Plexus choroideus und Skelettmuskeln sowie gelegentlich in den Brustwarzen statt. Eine schwache homogene Anreicherung in Brust und Achselhöhle ist normal.

Perfusionsszintigrafie des Myokards

Technetium(^{99m}Tc)-Sestamibi ist ein kationischer Komplex, der passiv durch die Kapillar- und Zellmembran diffundiert. Innerhalb der Zelle befindet es sich in den Mitochondrien, von denen es eingefangen wird. Die Retention basiert auf intakten Mitochondrien, was die Funktionsfähigkeit der Myozyten widerspiegelt. Nach intravenöser Injektion erfolgt die Verteilung des Arzneimittels im Myokard entsprechend der myokardialen Perfusion und Funktionsfähigkeit. Die myokardiale Aufnahme ist abhängig vom koronaren Blutfluss und beträgt ca. 1,5 % der injizierten Dosis unter Stressbedingungen und ca. 1,2 % in Ruhe. Irreversibel geschädigte Zellen nehmen Technetium(^{99m}Tc)-Sestamibi jedoch nicht auf. Hypoxie reduziert das Ausmaß der myokardialen Extraktion. Eine Redistribution findet nur in sehr geringem Maße statt. Daher sind für Untersuchungen in Ruhe und unter Belastung separate Injektionen erforderlich.

Szintimammografie

Die Anreicherung von Technetium(^{99m}Tc)-Sestamibi im Gewebe hängt primär von der Vaskularisierung ab, die im Tumorgewebe generell erhöht ist. Technetium(^{99m}Tc)-Sestamibi sammelt sich in verschiedenen Neoplasmen an, am stärksten in den Mitochondrien. Die Anreicherung hängt mit dem erhöhten energieabhängigen Metabolismus und der stärkeren Zellproliferation zusammen. Bei Überexpression von Multidrug-Resistance-Proteinen ist die zelluläre Anreicherung vermindert.

Darstellung von hyperaktivem Nebenschilddrüsengewebe

Technetium(99mTc)-Sestamibi ist sowohl in Nebenschilddrüsengewebe als auch in funktionsfähigem Schilddrüsengewebe zu finden, der *Wash-Out* aus gesundem Schilddrüsengewebe erfolgt aber normalerweise schneller als aus krankhaft verändertem Nebenschilddrüsengewebe.

Elimination

Die Elimination von Technetium(^{99m}Tc)-Sestamibi erfolgt vorwiegend über die Nieren und das hepatobiliäre System. Die Aktivität von Technetium(^{99m}Tc)-Sestamibi aus der Gallenblase befindet sich eine Stunde nach der Injektion im Darm. Ungefähr 27 % der injizierten Dosis werden innerhalb von 24 Stunden renal ausgeschieden, ungefähr 33 % werden innerhalb von 48 Stunden über die Fäzes ausgeschieden. Die Pharmakokinetik wurde bei Patienten mit eingeschränkter Nieren- oder Leberfunkton nicht charakterisiert.

Halbwertszeit

Die biologische Halbwertszeit von Technetium(^{99m}Tc)-Sestamibi im Myokard beträgt in Ruhe und unter Belastung etwa 7 Stunden. Die effektive Halbwertszeit (berücksichtigt biologische und physikalische Halbwertszeit) beträgt etwa 3 Stunden für das Herz und ungefähr 30 Minuten für die Leber.

5.3 Präklinische Daten zur Sicherheit

In akuten intravenösen Toxizitätsstudien an Mäusen, Ratten und Hunden war die niedrigste Dosis des rekonstituierten Sestamibi-Kits, die zum Tod führte, 7 mg/kg (angegeben als Cu (MIBI)₄ BF₄-Gehalt) bei

weiblichen Ratten. Dies entspricht der 500-fachen Menge der maximalen Dosis für einen Erwachsenen (MHD, Maximal Human Dose) von 70 kg, die 0,014 mg/kg beträgt. Das rekonstituierte Sestamibi-Kit verursachte in Dosen von 0,42 mg/kg (30-fache MHD) bzw. 0,07 mg/kg (5-fache MHD) über 28 Tage weder bei Ratten noch bei Hunden behandlungsbedingte Effekte. Erste toxische Erscheinungen nach wiederholter Applikation zeigten sich erst bei der Verabreichung der 150-fachen Menge der täglichen Dosis über 28 Tage.

Die extravasale Applikation führte im Tierversuch an der Applikationsstelle zu akuten Entzündungen mit Ödem und Hämorrhagie.

Studien zur Reproduktionstoxizität wurden nicht durchgeführt.

Cu (MIBI)₄ BF₄ zeigte im *Ames*-, *CHO/HPRT*- und *Schwesterchromatidaustauschtest* keine Genotoxizität. In zytotoxischen Konzentrationen wurde im In-vitro-Test an Humanlymphozyten eine Zunahme der Chromosomenmutationen beobachtet. Im Maus-Mikronukleus-Test in vivo wurde bei 9 mg/kg keine genotoxische Aktivität beobachtet.

Studien zur Beurteilung des kanzerogenen Potenzials des Kit für ein radioaktives Arzneimittel wurden nicht durchgeführt.

6. Pharmazeutische Angaben

6.1 Liste der sonstigen Bestandteile

Zinn(II)chlorid-Dihydrat Cysteinhydrochlorid-Monohydrat Natriumcitrat-Dihydrat Mannitol (Ph. Eur.) Salzsäure 3,7 % (zur pH-Wert-Einstellung) Natriumhydroxid (zur pH-Wert-Einstellung)

6.2 Inkompatibilitäten

Das Arzneimittel darf, außer mit den unter Abschnitt 12 aufgeführten, nicht mit anderen Arzneimitteln gemischt werden.

6.3 Dauer der Haltbarkeit

2 Jahre

Nach Radiomarkierung: 10 Stunden. Nach Radiomarkierung nicht über 25°C lagern.

6.4 Besondere Vorsichtsmaßnahmen für die Aufbewahrung

Nicht über 25°C lagern. Die Durchstechflaschen im Umkarton aufbewahren, um den Inhalt vor Licht zu schützen.

Aufbewahrungsbedingungen nach Radiomarkierung des Arzneimittels siehe Abschnitt 6.3.

Die Lagerung des radioaktiven Arzneimittels muss in Übereinstimmung mit den geltenden nationalen Vorschriften für radioaktives Material erfolgen.

6.5 Art und Inhalt des Behältnisses

10 ml Mehrdosen-Durchstechflaschen aus Borosilikatglas Typ 1 (Ph. Eur.) mit Chlorobutylgummistopfen.

Packungsgröße:

5 Durchstechflaschen

6.6 Besondere Vorsichtsmaßnahmen für die Beseitigung und sonstige Hinweise zur Handhabung

Allgemeine Warnhinweise

Radioaktive Arzneimittel dürfen nur von dazu berechtigten Personen in speziell dafür vorgesehenen klinischen Bereichen in Empfang genommen, gehandhabt und verabreicht werden. Empfang, Lagerung, Handhabung, Transport und Entsorgung unterliegen den Bestimmungen und/oder entsprechenden Genehmigungen der zuständigen Aufsichtsbehörde.

Radiopharmaka sollten unter Beachtung der Anforderungen des Strahlenschutzes und der pharmazeutischen Qualitätsanforderungen zubereitet werden. Geeignete aseptische Vorkehrungen müssen getroffen werden.

Der Inhalt der Durchstechflasche ist ausschließlich für die Zubereitung von Technetium(^{99m}Tc)-Sestamibi bestimmt und darf dem Patienten ohne vorherige Zubereitung nicht direkt verabreicht werden.

Anleitungen zur Zubereitung des Arzneimittels vor der Anwendung siehe Abschnitt 12.

Das Arzneimittel darf nicht angewendet werden, wenn zu irgendeinem Zeitpunkt der Zubereitung die Unversehrtheit der Durchstechflasche beeinträchtigt ist.

Die Anwendung muss so erfolgen, dass das Risiko einer Kontamination des Arzneimittels und einer Strahlenbelastung für die Anwender möglichst gering gehalten wird. Eine entsprechende Abschirmung ist zwingend erforderlich.

Der Inhalt des Kits ist vor der Zubereitung nicht radioaktiv. Sobald jedoch Natriumpertechnetat (^{99m}Tc) hinzugefügt wird, muss eine entsprechende Abschirmung der fertigen Lösung gewährleistet sein.

Die Anwendung von radioaktiven Arzneimitteln stellt ein Risiko für andere Personen durch die externe Strahlenbelastung oder Kontamination durch verschütteten Urin, Erbrochenes oder andere biologische Flüssigkeiten dar. Vorkehrungen zum Strahlenschutz müssen daher entsprechend den nationalen Anforderungen getroffen werden.

Nicht verwendetes Arzneimittel oder Abfallmaterial ist entsprechend den nationalen Anforderungen für radioaktives Material zu beseitigen.

7. Inhaber der Zulassung

Curium Netherlands B.V. Westerduinweg 3 1755 Le Petten Niederlande

8. Zulassungsnummer

4-00040

9. Datum der Erteilung der Zulassung/Verlängerung der Zulassung

22.12.2008 / 8.5.2013

10. Stand der Information

Juni 2021

11. Dosimetrie

Technetium(99m Tc) wird mittels eines (99 Mo/ 99m Tc)-Generators produziert und zerfällt unter Emission von γ -Strahlung mit einer mittleren Energie von 140 keV und einer Halbwertszeit von ca. 6 Stunden zu Technetium(99 Tc), das hinsichtlich seiner langen Halbwertszeit von 2,13 x 10^5 Jahren quasi als stabil angesehen werden kann.

Die unten aufgeführten Daten zur Strahlenexposition stammen aus der ICRP-Veröffentlichung 80 und basieren auf folgender Annahme: Nach intravenöser Injektion erfolgt eine schnelle Verteilung der Substanz aus dem Blut und sie wird hauptsächlich von Muskelgewebe (einschließlich Herz), Leber und Nieren, ein geringerer Anteil auch von Speicheldrüsen und Schilddrüse, aufgenommen. Wenn die Substanz in Verbindung mit einem Belastungstest injiziert wird, erfolgt eine vermehrte Aufnahme in Herz- und Skelettmuskeln, mit einer entsprechend geringeren Aufnahme in alle anderen Organe und Gewebe. Die Substanz wird über die Leber und die Nieren im Mengenverhältnis 75 % und 25 % ausgeschieden.

Organ	Absorbierte Dosis pro Einheit verabreichter Aktivität (mGy/MBq) (Ruhender Patient)						
	(Kullender Fauent)						
	Erwachsene	15-Jährige	10-Jährige	5-Jährige	1-Jährige		
Nebennieren	0.0075	0.0099	0.015	0.022	0.038		
Blase	0.011	0.014	0.019	0.023	0.041		
Knochenoberflächen	0.0082	0.010	0.016	0.021	0.038		
Gehirn	0.0052	0.0071	0.011	0.016	0.027		
Brust	0.0038	0.0053	0.0071	0.011	0.020		
Gallenblase	0.039	0.045	0.058	0.10	0.32		
Gastrointestinaltrakt							
Magen	0.0065	0.0090	0.015	0.021	0.035		
Dünndarm	0.015	0.018	0.029	0.045	0.080		
Dickdarm	0.024	0.031	0.050	0.079	0.015		
(oberer Anteil)	0.027	0.035	0.057	0.089	0.17		
(unterer Anteil)	0.019	0.025	0.041	0.065	0.12		
Herz	0.0063	0.0082	0.012	0.018	0.030		
Nieren	0.036	0.043	0.059	0.085	0.15		
Leber	0.011	0.014	0.021	0.030	0.052		
Lungen	0.0046	0.0064	0.0097	0.014	0.025		
Muskeln	0.0029	0.0037	0.0054	0.0076	0.014		
Oesophagus	0.0041	0.0057	0.0086	0.013	0.023		
Ovarien	0.0091	0.012	0.018	0.025	0.045		
Pankreas	0.0077	0.010	0.016	0.024	0.039		
Rotes Knochenmark	0.0055	0.0071	0.011	0.030	0.044		
Speicheldrüsen	0.014	0.017	0.022	0.015	0.026		
Haut	0.0031	0.0041	0.0064	0.0098	0.019		
Milz	0.0065	0.0086	0.014	0.020	0.034		
Hoden	0.0038	0.0050	0.0075	0.011	0.021		
Thymus	0.0041	0.0057	0.0086	0.013	0.023		
Schilddrüse	0.0053	0.0079	0.012	0.024	0.045		
Uterus	0.0078	0.010	0.015	0.022	0.038		
Restliche Organe	0.0031	0.0039	0.0060	0.0088	0.016		
Effektive Dosis (mSv/MBq)	0.0090	0.012	0.018	0.028	0.053		

Organ Absorbierte Dosis pro Einheit verabreichter Aktivität (mGy/MBq)
(Belastung)

	Erwachsene	15-Jährige	10-Jährige	5-Jährige	1-Jährige
Nebennieren	0.0066	0.0087	0.013	0.019	0.033
Blase	0.0098	0.013	0.017	0.021	0.038
Knochenoberflächen	0.0078	0.0097	0.014	0.020	0.036
Gehirn	0.0044	0.0060	0.0093	0.014	0.023
Brust	0.0034	0.0047	0.0062	0.0097	0.018
Gallenblase	0.033	0.038	0.049	0.086	0.26
Gastrointestinaltrakt					
Magen	0.0059	0.0081	0.013	0.019	0.032
Dünndarm	0.012	0.015	0.024	0.037	0.066
Dickdarm	0.019	0.025	0.041	0.064	0.12
(oberer Anteil)	0.022	0.028	0.046	0.072	0.13
(unterer Anteil)	0.016	0.021	0.034	0.053	0.099
Herz	0.0072	0.0094	0.010	0.021	0.035
Nieren	0.026	0.032	0.044	0.063	0.11
Leber	0.0092	0.012	0.018	0.025	0.044
Lungen	0.0044	0.0060	0.0087	0.013	0.023
Muskeln	0.0032	0.0041	0.0060	0.0090	0.017
Oesophagus	0.0040	0.0055	0.0080	0.012	0.023
Ovarien	0.0081	0.011	0.015	0.023	0.040
Pankreas	0.0069	0.0091	0.014	0.021	0.035
Rotes Knochenmark	0.0050	0.0064	0.0095	0.013	0.023
Speicheldrüsen	0.0092	0.011	0.0015	0.0020	0.0029
Haut	0.0029	0.0037	0.0058	0.0090	0.017
Milz	0.0058	0.0076	0.012	0.017	0.030
Hoden	0.0037	0.0048	0.0071	0.011	0.020
Thymus	0.0040	0.0055	0.0080	0.012	0.023
Schilddrüse	0.0044	0.0064	0.0099	0.019	0.035
Uterus	0.0072	0.0093	0.014	0.020	0.035
Restliche Organe	0.0033	0.0043	0.0064	0.0098	0.018
		0.040	0.045		
Effektive Dosis (mSv/MBq)	0.0079	0.010	0.016	0.023	0.045

Die effektive Dosis basiert auf der Annahme, dass bei Erwachsenen alle 3,5 Stunden die Blase entleert wird.

Herzdiagnostik

Die effektive Dosis, die sich durch Anwendung einer maximal empfohlenen Aktivität von 2.000 MBq Technetium(99mTc)-Sestamibi bei einem Erwachsenen mit einem Körpergewicht von 70 kg ergibt, liegt bei etwa 16,4 mSv bei Umsetzung des Ein-Tages-Protokolls mit der Verabreichung von 500 MBq in Ruhe und 1.500 MBq unter Belastung.

Bei einer verabreichten Aktivität von 2.000 MBq beträgt die typische Strahlendosis für das Zielorgan Herz 14 mGy und die typischen Strahlendosen für die kritischen Organe Gallenblase, Nieren und oberer Dickdarm liegen bei 69, 57 bzw. 46,5 mGy.

Die effektive Dosis, die sich durch Anwendung einer maximal empfohlenen Aktivität von 1.800 MBq (900 MBq in Ruhe und 900 MBq unter Belastung) Technetium(^{99m}Tc)-Sestamibi bei einem Erwachsenen mit einem Körpergewicht von 70 kg ergibt, liegt bei etwa 15,2 mSv für ein Zwei-Tages-Protokoll. Bei einer verabreichten Aktivität von 1.800 MBq beträgt die typische Strahlendosis für das Zielorgan Herz 12,2 mGy und die typischen Strahlendosen für die kritischen Organe Gallenblase, Nieren und oberer Dickdarm liegen bei 64,8, 55,8 bzw. 44.1 mGy.

Szintimammografie

Die effektive Dosis, die sich durch Anwendung einer maximal empfohlenen Aktivität von 1.000 MBq Technetium(^{99m}Tc)-Sestamibi bei einem Erwachsenen mit einem Körpergewicht von 70 kg ergibt, liegt bei etwa 9 mSv

Bei einer verabreichten Aktivität von 1.000 MBq beträgt die typische Strahlendosis für das Zielorgan Brust 3,8 mGy und die typischen Strahlendosen für die kritischen Organe Gallenblase, Nieren und oberer Dickdarm liegen bei 39, 36 bzw. 27 mGy.

Nebenschilddrüsenszintigrafie

Die effektive Dosis, die sich durch Anwendung einer maximal empfohlenen Aktivität von 700 MBq Technetium(^{99m}Tc)-Sestamibi bei einem Erwachsenen mit einem Körpergewicht von 70 kg ergibt, liegt bei etwa 6.3 mSv.

Bei einer verabreichten Aktivität von 700 MBq beträgt die typische Strahlendosis für das Zielorgan Schilddrüse 3,7 mGy und die typischen Strahlendosen für die kritischen Organe Gallenblase, Nieren und oberer Dickdarm liegen bei 27,3, 25,2 bzw. 18,9 mGy.

12. Anweisungen zur Zubereitung von radioaktiven Arzneimitteln

Das Aufziehen des Arzneimittels muss unter aseptischen Bedingungen durchgeführt werden. Die Durchstechflaschen dürfen erst nach Desinfektion des Stopfens geöffnet werden; die Lösung muss mit einer Einmalspritze mit einer geeigneten Schutzabschirmung und einer sterilen Einmalnadel über den Stopfen oder unter Verwendung eines zugelassenen automatischen Applikationssystems entnommen werden. Wenn die Durchstechflasche beschädigt ist, darf das Arzneimittel nicht verwendet werden.

Anleitungen zur Herstellung von Technetium(99mTc)-Sestamibi

Die Zubereitung von Technetium(^{99m}Tc)-Sestamibi aus dem Technescan Sestamibi Kit erfolgt aseptisch nach folgender Methode. Die Erhitzung des Präparats kann entweder in einem Wasserbad oder in einem Heizblock erfolgen. Beide Methoden werden nachfolgend beschrieben:

Art der Zubereitung

Kochverfahren:

- 1. Während der Zubereitung müssen wasserfeste Handschuhe getragen werden. Die Plastikkappe von der Technescan Sestamibi Durchstechflasche entfernen und den Deckel der Durchstechflasche durch Abreiben mit Alkohol desinfizieren.
- 2. Die Durchstechflasche in einen geeigneten Abschirmschutzbehälter setzen, der mit Datum und Uhrzeit der Zubereitung, Volumen und Aktivität beschriftet ist.
- 3. Mit einer sterilen, abgeschirmten Spritze zusatzfreie, sterile und pyrogenfreie Natriumpertechnetat (^{99m}Tc)-Lösung max. 11,1 GBq in 1 bis 3 ml, aber maximal 3 ml aseptisch aufziehen.
- 4. Aseptisch Natriumpertechnetat (^{99m}Tc)-Lösung in die Durchstechflasche im Abschirmschutzbehälter zufügen. Ohne die Nadel wieder herauszuziehen, zum Druckausgleich ein gleiches Volumen Luft entnehmen.
- 5. Die Durchstechflasche mittels 5 10 schneller Auf- und Abwärtsbewegungen kräftig schütteln.
- 6. Die Durchstechflasche aus dem Abschirmschutzbehälter entfernen und aufrecht in ein geeignetes, abgeschirmtes, kochendes Wasserbad stellen, ohne den Boden des Wasserbades zu berühren. Die Kochzeit beträgt 10 Minuten. Die Zeit für die 10 Minuten wird genommen, sobald das Wasser wieder anfängt zu kochen.
 - Hinweis: Während des Erhitzens muss die Durchstechflasche aufrecht stehen. Ein Wasserbad verwenden, bei dem der Stopfen aus dem Wasser herausragt.
- 7. Die abgeschirmte Durchstechflasche aus dem Wasserbad nehmen und für 15 Minuten zum Abkühlen stehen lassen.
- 8. Vor der Anwendung visuell auf Partikelfreiheit und Verfärbungen prüfen.
- 9. Wenn nötig, ist eine Verdünnung mit 0,9 %iger Kochsalzlösung möglich.
- 10. Unter aseptischen Bedingungen mit einer abgeschirmten Spritze aufbereitete Lösung entnehmen. Die Lösung innerhalb von zehn (10) Stunden nach Zubereitung verwenden.

11. Die radiochemische Reinheit ist vor der Verabreichung nach der radiodünnschichtchromatographischen Methode (Radio TLC-Methode), wie nachfolgend beschrieben, zu prüfen.

Heizblockverfahren:

- 1. Während der Zubereitung müssen wasserfeste Handschuhe getragen werden. Die Plastikkappe von der Technescan Sestamibi Durchstechflasche entfernen und den Deckel der Durchstechflasche durch Abreiben mit Alkohol desinfizieren.
- 2. Die Durchstechflasche in einen geeigneten Abschirmschutzbehälter setzen, der mit Datum und Uhrzeit der Zubereitung, Volumen und Aktivität beschriftet ist.
- 3. Mit einer sterilen, abgeschirmten Spritze zusatzfreie, sterile und pyrogenfreie Natriumpertechnetat (^{99m}Tc)-Lösung max. 11,1 GBq in etwa 3 ml aseptisch aufziehen. Für die maximale Aktivität von 11,1 GBq nicht mehr als 3 ml Natriumpertechnetat (^{99m}Tc)-Lösung verwenden.
- 4. Aseptisch Natriumpertechnetat (^{99m}Tc)-Lösung im Abschirmschutzbehälter der Durchstechflasche zufügen. Ohne die Nadel wieder herauszuziehen, zum Druckausgleich ein gleiches Volumen Luft entnehmen.
- $5. \quad \text{Die Durchstechflasche mittels 5} 10 \text{ schneller Auf- und Abwärtsbewegungen kräftig schütteln.} \\$
- 6. Die Durchstechflasche in den auf 120°C vorgeheizten Heizblock stellen und 10 Minuten inkubieren. Der Heizblock sollte der Größe der Durchstechflasche angepasst werden, um einen korrekten Hitzetransfer vom Heizgerät zum Inhalt der Durchstechflasche zu gewährleisten.
- 7. Die Durchstechflasche aus dem Heizblock nehmen und auf Raumtemperatur abkühlen lassen.
- 8. Vor der Anwendung visuell auf Partikelfreiheit und Verfärbungen prüfen.
- 9. Wenn nötig, ist eine Verdünnung mit 0,9 %iger Kochsalzlösung möglich.
- 10. Unter aseptischen Bedingungen mit einer abgeschirmten Spritze aufbereitete Lösung entnehmen. Die Lösung innerhalb von zehn (10) Stunden nach Zubereitung verwenden.
- 11. Die radiochemische Reinheit ist vor der Verabreichung nach der radiodünnschichtchromatographischen Methode (Radio-TLC-Methode), wie nachfolgend beschrieben, zu prüfen.

Hinweis: Die Gefahr des Zerbrechens oder einer signifikanten Kontamination besteht immer, wenn Durchstechflaschen mit radioaktivem Material erhitzt werden.

Qualitätskontrolle

Radio-TLC-Methode zur quantitativen Bestimmung von Technetium (99mTc)-Sestamibi

1. Material

- 1.1 Baker-Flex-Aluminiumoxidplatten, # 1 B-F, vorgeschnitten auf 2,5 cm x 7,5 cm.
- 1.2 Ethanol > 95 %
- 1.3 Capintec oder ein gleichwertiges Instrument zur Radioaktivitätsmessung im Bereich von 0.7-11.1 GBq.
- 1.4 1 ml Spritze mit Nadel der Größe 22-26 G.
- 1.5 Eine kleine Entwicklungskammer mit Abdeckung (ca. 100 ml Becherglas verschlossen mit Parafilm® ist ausreichend).

2. Methode

- 2.1 Genügend Ethanol in die Entwicklungskammer (Becherglas) füllen, um eine Höhe von 3-4 mm Lösungsmittel zu erhalten. Die Entwicklungskammer (Becherglas) mit Parafilm® verschließen und ca. 10 Minuten beiseitestellen, damit eine Kammersättigung eintritt.
- 2.2 Mithilfe einer 1 ml Spritze der Größe 22 26 G einen Tropfen Ethanol auf die Aluminiumoxid-TLC-Platte aufbringen, 1,5 cm vom Boden. **Der Ethanoltropfen darf nicht trocknen.**
- 2.3 Auf den Ethanoltropfen einen Tropfen der Technetium (99m Tc)-Sestamibi-Lösung aufbringen. Den Tropfen **ohne Erhitzen** trocknen lassen.
- 2.4 Die Lösungsmittelfront über eine Distanz von 5,0 cm laufen lassen.
- 2.5 Die Platte in einem Abstand von 4,0 cm vom Boden abschneiden und jedes Teil einer Radioaktivitätsmessung unterziehen.
- Die radiochemische Reinheit (in %) wird wie folgt berechnet:
 % Technetium(^{99m}Tc)-Sestamibi = Aktivität des oberen Teils / Aktivität beider Teile x 100
- 2.7 Die radiochemische Reinheit muss \geq 94 % Technetium(99m Tc)-Sestamibi betragen, ansonsten ist die Zubereitung zu verwerfen.

Hinweis: Kein Material verwenden, wenn die radiochemische Reinheit unter 94 % liegt.

VERSCHREIBUNGSPFLICHT/APOTHEKENPFLICHT

Rezeptpflichtig, wiederholte Abgabe verboten, Abgabe nur an Inhaber einer Bewilligung für den Umgang mit radioaktiven Stoffen gemäß Strahlenschutzgesetz.